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Key Points: 6 

• Operational wind products are a key component of skillful numerical weather prediction 7 

in the Arctic. 8 

• Augmenting operational winds with Aeolus winds could enhance the forecasts of winds 9 

and temperature fields by 14-18%. 10 

• Aeolus wind improvements are most pronounced on strong wind days.  11 
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Abstract 12 

It has been proven that assimilating winds from the Aeolus global Doppler wind lidar would 13 

enhance the predictive skill of weather forecast models. In this study, we use a series of 14 

Observing System Experiments to examine how operational winds and Aeolus winds impact 15 

Environment and Climate Change Canada’s global forecast system over the data-sparse Arctic 16 

region. Aeolus winds improve the tropospheric wind and temperature forecasts by about 0.7 to 17 

0.9% of error reduction (a 15-20% effect compared to the impact of operational wind products), 18 

while having little impact on the specific humidity field. In particular, Aeolus winds have an 19 

impact on forecasts of strong wind days on the wind and temperature fields that is double the 20 

impact of the forecasts of less intense wind days and provides a disproportionate improvement to 21 

forecasts on these days compared to other operational wind measurements. These findings 22 

suggest significant potential for global doppler wind lidar observations to enhance severe-23 

weather prediction in polar regions. 24 

Plain Language Summary 25 

Wind observations are necessary to produce accurate weather forecasts. Aeolus is a new satellite 26 

that provides the first global wind profile measurements and it has a proven positive impact on 27 

forecasts. In this study, we investigate the impact of a large set of wind observations, including 28 

Aeolus winds, on Arctic weather forecasts using Canada’s main forecast. We can calculate how 29 

these wind observations improve the forecast throughout the atmosphere, and find that Aeolus 30 

winds further improve the forecast in the lower atmosphere. Furthermore, our findings highlight 31 

the heightened significance of wind observations in ensuring precise forecasts of strong wind 32 

days. The difference is about double the improvement on the forecast of less intense wind days. 33 

This suggests that future doppler wind lidar programs following from Aeolus could significantly 34 



 

 

benefit forecast skill in data-sparse regions like the Arctic and Antarctic, which are of growing 35 

societal, political, and economic interest. 36 

1 Introduction 37 

Arctic weather forecasts produced by operational numerical weather prediction (NWP) 38 

models present unique challenges (Bauer et al., 2016; Jung et al., 2016; Gascard et al., 2017). 39 

The Arctic presents unique logistical and environmental challenges that hinder real-time data 40 

collection and the maintenance of observation equipment (Randriamampianina et al., 2019; 41 

Lawrence et al., 2019; James et al., 2020; Joe et al., 2020; Chou et al., 2020). Furthermore, the 42 

Arctic’s unique geography and rapidly changing climate contribute to unpredictable and extreme 43 

weather events (Cohen et al. 2014; Francis et al., 2017; Lawrence et al., 2019; Eikeland et al., 44 

2022). Nevertheless, improving Arctic forecasts remains imperative for the safety of residents 45 

and travellers in the region. Furthermore with melting sea ice opening up new opportunities, the 46 

Arctic is gaining increasing importance for shipping and industry (Gascard et al., 2017; Eicken, 47 

2013; Inoue et al., 2015). Finally, given implications of Arctic change for  have sea level rise and 48 

altered weather patterns, accurate forecasts promises to improve our understanding of and ability 49 

to adapt to climate change (Cohen et al. 2014; Jung et al., 2014; Overland et al. 2015; Francis et 50 

al., 2017; Laroche and Poan, 2021). 51 

An essential element in producing reliable forecasts is the initialization of NWP systems 52 

with precise and timely observational data (Inoue et al., 2015; Randriamampianina et al., 2021). 53 

These observations allow estimation of the present atmospheric state, enabling the NWP system 54 

to establish the initial conditions necessary for accurate forecasts. Wind is a fundamental 55 

component of atmospheric dynamics, influencing the movement of air masses, the formation and 56 

evolution of weather systems, and the transport and advection of heat, moisture, and other 57 
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atmospheric constituents (Baker et al., 1995; Graham et al., 2000; Naakka et al., 2019). Thus, 58 

wind observations play a pivotal role in NWP initialization, even after accounting for the balance 59 

that constrains winds given pressure and temperature measurements (Horányi et al., 2014; 60 

Naakka et al., 2019; James et al., 2020). 61 

Observations of altitude-resolved winds are available through aircraft reports (AMDAR; 62 

Dai et al., 2014; James et al., 2020), radiosondes (Durre et al., 2018; Carminati et al., 2019; Rani 63 

et al., 2021), and wind profiling technologies (e.g., Doppler radar and lidar; Augustine and 64 

Zipser, 1987; Rogers et al., 1993; Liu et al., 2020). However, these observations are often 65 

sporadic and notably scarce, particularly over vast bodies of water like oceans and the polar 66 

regions. Passive space-based observations offer an alternative, with Atmospheric Motion Vectors 67 

(AMVs) estimating wind speed and direction based on cloud and water vapor movements 68 

(Velden et al., 2017; Mizyak et al., 2016). Additionally, space-based scatterometers provide 69 

surface winds over the ocean. Despite the advantages of AMVs in offering wind information 70 

across multiple tropospheric layers through multispectral water vapor remote sensing (Velden et 71 

al., 1997; Bormann and Thépaut, 2004; Le Marshall et al., 2008), they lack precision in altitude 72 

assignment and are limited to a few levels, hindering their representation of small-scale vertical 73 

wind profile structures. Conversely, spaceborne scatterometers focus only on near-surface ocean 74 

winds, with their accuracy highly dependent upon surface weather conditions (Chiara et al., 75 

2017; Young et al., 2017). 76 

The Aeolus mission, featuring the first spaceborne Doppler Wind Lidar (DWL), provides 77 

the first-ever global horizontal line-of-sight (HLOS) wind profile measurements. Studies have 78 

demonstrated that assimilating Aeolus HLOS winds into NWP systems significantly enhances 79 

forecast accuracy. Examples of operational forecast systems include those of ECMWF (Rennie 80 



 

 

et al., 2021), NCMRWF (George et al., 2021), DWD (Martin et al., 2023), NOAA (Garrett et al., 81 

2022), Météo-France (Pourret et al., 2022), and Environment and Climate Change Canada 82 

(ECCC; Laroche and St-James, 2022). Most of the improvements were found in the tropical 83 

troposphere to lower stratosphere. Notably, Aeolus winds have also demonstrated a beneficial 84 

impact on forecasts in data-sparse regions such as the Southern Hemisphere extra-tropics and the 85 

Arctic (Mile et al., 2022; Chou and Kushner, 2023; Zuo and Hasager, 2023). 86 

Despite the good coverage that polar-orbiting satellites provide over the Arctic, more 87 

than 90% of the assimilated observations over the Arctic are microwave and infrarared radiances 88 

(Lawrence et al., 2019; Randriamampianina et al., 2021). As previously discussed, wind 89 

observations from conventional surface and aircraft measurements are extremely sparse in this 90 

region. Hence, it is important to assess the impact of existing wind observations and any 91 

additional wind observations over the Arctic to compare and determine their impact on NWP 92 

model performance over the Arctic. 93 

In this study, we extend the work of Chou and Kushner (2023) and evaluate the impact of 94 

operational winds and Aeolus winds on the global forecast system of ECCC with a focus on the 95 

Arctic. Chou and Kushner (2023) used a series of Observing System Experiments (OSE), in 96 

which all operational winds or Aeolus winds are withheld in the assimilation and the forecasts 97 

are verified against the fifth-generation European Centre for Medium-Range Weather Forecasts 98 

(ECMWF) atmospheric reanalysis (ERA5, Hersbach et al., 2023). The integration of operational 99 

winds significantly enhanced tropospheric wind forecasts, particularly in tropical regions, 100 

resulting in an impressive 8% reduction in forecast error. Further augmenting these assimilations 101 

with Aeolus winds contributed an additional 0.7-0.9% improvement or about 10% of the impact 102 

of operational winds. Notably, Aeolus winds also proved beneficial in regions with limited data, 103 



 

 

such as the Arctic and the extra-tropical Southern Hemisphere, demonstrating a reduction in 104 

forecast errors ranging from 0.5% to 0.9%. While operational winds contribute significantly to 105 

forecast improvement, unexpected occurrences such as the COVID-19 pandemic can disturb 106 

aircraft measurements, resulting in less precise forecasts during such periods (James et al., 2020). 107 

This circumstance, and the need to quantify Doppler wind lidar profiles’ impact in isolation from 108 

other wind-observation systems, prompts the addition of this study’s OSE labeled “CNTRL–109 

wind+Aeolus” (refer to Section 2 for the experimental setup). This new OSE aims to specifically 110 

assess the isolated impact of Aeolus winds in the Arctic without the influence of other wind 111 

products. 112 

Our investigation encompasses an assessment of the overall improvements in Arctic 113 

forecasts resulting from the assimilation of different sets of wind observations, as well as an 114 

exploration of the influence of wind observations on the forecasts related to enhanced kinetic 115 

energy and intense Integrated Vapor Transport (IVT). Henceforth, “disturbed” atmospheric state 116 

is used to describe days with strong winds or intense vapor transport. These two metrics were 117 

selected because of their large societal and economic impacts. Enhanced kinetic energy is 118 

commonly used as a severe-weather indicator, e.g. for severe storms, tornadoes, hurricanes, and 119 

typhoons (Palmén, 1958; DeMego and Bosart, 1982; Misra et al., 2013; Bass et al., 2017) and as 120 

an indirect indicator of extreme rainfall and flooding events (Brodie and Rosewell, 2007; Chang 121 

et al., 2017; Kim et al., 2022). Energetic systems can also transport substantial moisture from 122 

moisture sources, which can lead to weather-related water damage (Hills, 1978; Jiang, 2003; 123 

Chen et al., 2012; Martinez et al., 2019; Olaguera et al., 2021). Recent research suggests that 124 

ongoing climate changes are likely modifying IVT patterns, influencing the frequency and 125 



 

 

intensity of future extreme weather events (Radic et al., 2015; Mattingly et al., 2016; Gershunov 126 

et al., 2017; Tan et al., 2019).  127 

This paper is organized as follows: Section 2 outlines the experimental setup, including 128 

details on the ECCC global forecast system and OSE. In Section 3, we present impact scores by 129 

comparing forecasts to ERA5 and define strong wind and strong vapor transport events. Section 130 

4 unveils our results on the impact of wind observations on forecasts over the Arctic and on 131 

atmospheric events in the region. Finally, Section 5 offers a discussion of the main conclusions 132 

derived from this study. 133 

2 Experimental Setup 134 

OSEs are used to evaluate and assess the impact of observational data on NWP models 135 

by adding or removing a set of observations that are assimilated into the NWP model (Bouttier 136 

and Kelly, 2001; Laroche and Poan, 2021; Laroche and St-James, 2022). In this study, we use an 137 

extension of the series of OSEs used in Chou and Kushner (2023) to examine the impact of the 138 

operational wind observations and of Aeolus HLOS winds on the Arctic forecasts of the 139 

Canadian Global Deterministic Prediction System (GDPS). The OSEs cover two seasons: from 140 

July 1 to September 30 2019 (summer 2019) and from December 1 2019 to March 31 2020 141 

(winter 2020). The atmospheric component of the forecast system is the latest version of the 142 

operational Global Environmental Multiscale (GEM) model implemented at ECCC in 2019 143 

(McTaggart-Cowan et al., 2019) and the ocean component of the forecast system is the NEMO 144 

ocean model (Smith et al., 2018). The model uses approximately 15 km horizontal grid spacing 145 

and 84 vertical levels. The data assimilation scheme is the operational four-dimensional 146 

ensemble-variational (4D-EnVar) (Buehner et al., 2015) system, with a 6-h assimilation window 147 

which includes over 13 million observations assimilated daily. Two forecasts were generated 148 



 

 

daily (at 00 and 12 UTC). To minimize the computational cost, a coarser horizontal grid 149 

resolution of 39 km is employed and some aspects of the GEM physics are simplified. 150 

Implications of the use of this coarse resolution will be discussed in Section 5. Further details 151 

and justification on this simplified GDPS version are provided in Laroche and St-James (2022) 152 

and Chou and Kushner (2023). To examine the impact of wind observations, four experiments 153 

are carried out: 154 

1. CNTRL, an experiment with all operational observations. 155 

2. CNTRL–winds (i.e., “control-minus-winds”), an experiment with all operational 156 

observations except the operational wind observations. Operational winds include wind 157 

measurements from AMDAR, AMVs, radiosondes, surface stations, surface buoys, wind 158 

profilers, and scatterometry. This assesses the impact of all operational wind products on 159 

NWP skill. 160 

3. CNTRL–wind+Aeolus (i.e., “control-minus-winds-plus-Aeolus”), an experiment with all 161 

operational observations and Aeolus HLOS winds (both Rayleigh-clear and Mie-cloudy 162 

winds) but without the operational wind observations. The winds used are from the 163 

second reprocessed product, the Level-2B11 product. This tests the impact of Aeolus 164 

winds in isolation from the other wind products and provides an assessment of NWP 165 

performance if traditional wind observations were halted (such as the reduction in 166 

AMDAR flights during Covid 19) but Aeolus was assimilated. 167 

4. CNTRL+Aeolus (i.e., “control plus Aeolus”), an experiment that adds the Aeolus HLOS 168 

winds (both Rayleigh-clear and Mie-cloudy winds) to the CNTRL experiment. This tests 169 

the impact of Aeolus winds on top of the other wind products and provides an assessment 170 

of NWP performance if Aeolus winds were operationally assimilated. 171 



 

 

Chou and Kushner (2023) used OSEs 1, 2, and 4. The current study is the first to use OSE 3 to 172 

test the effect of Aeolus wind impacts separately from other wind products. 173 

 To evaluate the impact of the wind observations, we compare the forecast root-mean-174 

square error (RMSE) between the experiments. The mathematical expression of the forecast 175 

impact scores will be discussed in Section 3. Henceforth, the expression “impact of operational 176 

winds” (IOW) refers to the normalized change in the forecast scores from the CNTRL compared 177 

to the CNTRL–winds (i.e., error of CNTRL–winds minus error of CNTRL, which is therefore 178 

positive for improvement), the expression “impact of Aeolus winds” (IAW) refers to the change 179 

in the forecast scores from the CNTRL–winds+Aeolus compared to the CNTRL–winds (i.e., 180 

error of CNTRL–winds minus error of CNTRL–winds+Aeolus, which is therefore, again, 181 

positive for improvement), and the expression “impact of Aeolus on top of operational winds” 182 

(IAOW) refers to the change from the CNTRL+Aeolus compared to the CNTRL (i.e., error of 183 

CNTRL minus error of CNTRL+Aeolus, so, again, positive for improvement). 184 

3 Method 185 

We verify the forecasts from OSEs described in Section 2, against ERA5 from ECMWF 186 

(Hersbach et al., 2023). ERA5 is based on a four-dimensional variational (4DVar) data 187 

assimilation scheme using Cycle 41r2 of the Integrated Forecast System (IFS). We use the 188 

hourly winds, temperature, and specific humidity at 00 and 12 UTC. The data are gridded on a 189 

regular latitude-longitude grid of 0.25°, but linearly interpolated onto grid of 0.5° to match the 190 

coarser resolution of the OSEs, and only the OSEs’ 16 pressure levels are selected (10, 20, 30, 191 

50, 70, 100, 150, 200, 250, 300, 400, 500, 700, 850, 925, and 1000 hPa). 192 



 

 

The impact of wind observations is defined as the normalized change (percentage 193 

change) in the forecast RMSE between the experiments over the Arctic. The steps to calculate 194 

the forecast RMSE are as follows: 195 

1. Calculate the cosine-weighted mean-square-error (MSE) between the forecasts from 196 

OSEs and the verification field from ERA5, over the Arctic (70° to 90°N), for each 197 

forecast hour (two forecasts daily for a total of seven months). The MSE for a scalar field 198 

𝑥 (i.e., temperature, specific humidity, and IVT) is 199 

𝑀𝑆𝐸 =
∑ 𝑤𝑖(𝑥𝑓 − 𝑥𝑣)𝑖

2
𝑖

∑ 𝑤𝑖𝑖
 200 

(1) 201 

and the MSE for a vector field �⃗� (i.e., vector wind and wind shear) is 202 

𝑀𝑆𝐸𝑣𝑒𝑐𝑡𝑜𝑟 =
∑ 𝑤𝑖||�⃗�𝑓 − �⃗�𝑣||𝑖

2
𝑖

∑ 𝑤𝑖𝑖
. 203 

(2) 204 

The index 𝑖 indicates a grid point along a latitude band, the subscript 𝑓 indicates the 205 

forecast, and the subscript 𝑣 indicates the verification field. The weight 𝑤𝑖 = cos 𝜃𝑖, 206 

where 𝜃𝑖 is the latitude at location 𝑖. 207 

2. The weighted MSEs are averaged over the seven months covering the available Aeolus 208 

observation products. 209 

3. The square-root of the averaged weighted MSEs is the RMSE at each pressure level. 210 

4. The normalized change in scores represents the percentage change of the RMSE between 211 

a pair of OSEs from Step 3. 212 



 

 

5. The tropospheric impact score is the averaged scores from Step 4 from the four pressure 213 

levels: 850 hPa, 500 hPa, 250 hPa, and 100 hPa. 214 

As introduced in Section 2, the impact of operational winds (IOW) is the percentage 215 

difference of forecast RMSE between CNTRL and CNTRL–winds; the impact of Aeolus winds  216 

(IAW) is the percentage difference of CNTRL–winds+Aeolus and CNTRL–winds; the impact of 217 

Aeolus on top of operational winds (IAOW) is the percentage difference of CNTRL+Aeolus and 218 

CNTRL.   219 

Chou and Kushner (2023) show that adding Aeolus winds into data assimilation, which 220 

are the first global wind profile measurements, can improve the forecasts of the vertical structure 221 

of the wind field. We carry out this analysis in this study and will investigate the impact of wind 222 

observations on Arctic weather events on the tropospheric wind vector, temperature, wind shear 223 

(thermal-wind) vector (defined as the vector wind difference between 250 hPa and 850 hPa), 224 

specific humidity, and IVT. Analysis of specific humidity was included to help interpret the 225 

results of the IVT analysis.  226 

For the second part of the paper (Section 4.2), we will discuss the impact of wind 227 

observations over the Arctic when the atmosphere is disturbed (i.e., strong kinetic energy or 228 

intense IVT). In preliminary work, we have investigated the impact of wind observations on 229 

localized events, such as strong wind events at radiosonde stations over the Arctic and forecasts 230 

along Aeolus swaths. This analysis is not shown in this study because, due to the short period of 231 

the Aeolus mission and the coarse resolution of the OSE forecasts, there were not many 232 

individual local events to average over, and we found that the OSEs had limited ability to resolve 233 

smaller-scale atmospheric features associated with severe Arctic weather such as polar lows. 234 

Instead, to investigate the impact of wind observations on predictability of extreme Arctic 235 



 

 

weather events, we focus on days in which the atmosphere is strongly disturbed over the entire 236 

Arctic. In particular, we examine the impact of wind observations on the forecasts of “strong” 237 

500-hPa Kinetic Energy (KE500) days vs. “normal” KE500 days, and of strong IVT days vs. 238 

normal IVT days over the Arctic. The KE500 (𝑚2𝑠−2) is 239 

𝐾𝐸500 =
1

2
(𝑢2 + 𝑣2) 240 

(3) 241 

where 𝑢 and 𝑣 are the 500-hPa zonal and meridional wind components, respectively. The IVT 242 

(𝑘𝑔𝑚−1𝑠−1) is 243 

𝐼𝑉𝑇 = √(
1

𝑔
∫ 𝑞𝑢𝑑𝑝

300

1000

)

2

+ (
1

𝑔
∫ 𝑞𝑣𝑑𝑝

300

1000

)

2

 244 

(4) 245 

where 𝑔 is the gravitational acceleration, 𝑞 is the specific humidity, 𝑢 and 𝑣 are the zonal and 246 

meridional winds, and the product of the specific humidity and the winds is integrated over 1000, 247 

925, 850, 700, 500, 400, and 300 hPa (Cordeira and Ralph, 2020; Reynolds et al., 2022). 248 

We define the strong KE500 days and strong IVT days in a similar way. First, we define 249 

the threshold at each grid point as the 90th percentile of the local KE500 or the local IVT for the 250 

summer season and the winter season separately. We record the number of grid points poleward 251 

of 70∘N that exceed this threshold and take the top 25% of this number for both seasons 252 

combined to get “strong weather-event days” with more disturbed atmospheric conditions. Trial 253 

and error suggests that this provides sufficient sampling to assess the impact of wind 254 

observations on the forecasts (Section 4.2). 255 



 

 

4 Results 256 

4.1 Impact of operational winds and Aeolus winds over the Arctic 257 

Figure 1 shows the impact of operational winds (IOW), Aeolus winds (IAW), and Aeolus 258 

winds on top of operational winds (IAOW) on the tropospheric forecast RMSE over the Arctic. 259 

Note that the y-axis extends from -12 to 12% for the IOW (panel a) and from -4 to 4% for the 260 

IAW and IAOW (Figure 1b,c).  As expected, operational wind observations notably enhance the 261 

forecasts of wind fields (vector wind and wind shear) and the temperature field, which provides a 262 

context for assessing the impacts of Aeolus (Chou and Kushner, 2023). Averaged scores for 263 

these three fields over five days demonstrate an improvement of approximately 5%. Replacing 264 

operational winds by Aeolus winds, IAW (Figure 1b), consistently delivers a positive impact of 265 

about 2%, constituting roughly 40% of the improvement achieved with all operational winds. It 266 

is noteworthy that Aeolus, despite being a single-satellite measurement system, contributes 267 

meaningfully to forecast enhancement. 268 

Considering all operational winds, as reflected in the IAOW in Figure 1c, Aeolus winds 269 

further enhance the wind and temperature fields throughout the five-day forecast lead time by 270 

0.7% and 0.9%, respectively, representing 14% to 18% of the overall improvement obtained with 271 

all operational winds. While this positive IAOW is relatively modest compared to improvements 272 

found by Aeolus for other models (e.g., Garrett et al., 2022; Rennie et al., 2021), it aligns with 273 

previous findings in OSEs conducted with the ECCC GDPS (Laroche and St-James, 2022; Chou 274 

and Kushner, 2023). The reasons for this modest impact are elaborated on in Chou and Kushner 275 

(2023). Despite the relatively small contribution, the impact of Aeolus winds on top of 276 

operational winds is noteworthy, particularly considering that Aeolus observations for this period 277 

constitute less than 1% of all operational wind observations. Notably, operational winds, 278 



 

 

inclusive of measurements from various ground-based instruments, radiosondes, and satellites, 279 

account for roughly 10% of all operational observations over the Arctic in the ECCC GDPS. The 280 

lack of significance when assimilating Aeolus winds on top of operational winds might arise 281 

from the simplification and relatively coarse resolution of the ECCC model version used in this 282 

work to reduce computational cost, systematic model issues beyond this simplification, or 283 

assimilation system deficiencies, as discussed in Chou and Kushner (2023). Importantly, the 284 

IAW remains significant, reaching at least 90% confidence level, particularly in the wind fields 285 

for the first three days of the lead time.286 

 287 

Figure 1: Normalized change in RMS forecast error between (a) CNTRL–winds and CNTRL (IOW), (b) CNTRL–288 

winds and CNTRL–winds+Aeolus (IAW), and (c) CNTRL and CNTRL+Aeolus (IAOW), compared to ERA5 in the 289 

troposphere for vector wind (red), temperature (blue), wind shear (black), specific humidity (green), and integrated 290 

vapor transport (IVT) (purple) in the troposphere (850-100hPa layer) for 5-day forecasts over the Arctic. Positive 291 

impact means a reduction in the forecast error. The impacts that are significant at 95% confident level are marked 292 

with double asterisk (**) and impacts that are significant at 90% confident level are marked with single asterisk (*). 293 

The significance is tested using a t-test for the null hypothesis that the pair of experiments have identical cosine-294 



 

 

weighted RMSE from all four layers. The averaged impact over the five forecast lead time days is shown in the 295 

brackets. 296 

 Both operational winds and Aeolus winds show minimal to no impact on the specific 297 

humidity field, despite enhancements in other fields. The averaged IOW in Figure 1a over a five-298 

day forecast lead time is approximately 3%, which is about half of the impact observed in the 299 

vector wind field. The IAW in Figure 1b and the IAOW in Figure 1c on the specific humidity 300 

field lack consistency throughout the forecast lead time. Consequently, the impact on the IVT, 301 

encompassing both wind and specific humidity information, falls between the impact on the 302 

wind fields and the specific humidity field. The averaged scores for the IVT are 4.0, 1.7, and 303 

0.6% for the IOW, IAW, and IAOW, respectively. 304 

Figure 2 provides a view of the spatial structure of the impact of wind observations on the 305 

vector wind field by breaking down the pressure-level and forecast lead time dependence (up to 306 

day 10). The tropospheric impacts observed in the first five days of the forecast lead time align 307 

with the findings depicted in Figure 1. Note that the color scale is compressed by factors of two 308 

when transitioning from the IOW in Figure 2a to the IAW in Figure 2b, and to the IAOW in 309 

Figure 2c. This demonstrates, consistently with Figure 1, that IAW contributes to about half of 310 

the improvement obtained by all operational winds. In the case of tropospheric IAOW, the 311 

enhancements from Aeolus winds on top of operational winds exceed 25% of the improvement 312 

obtained with all operational winds in short-range forecasts and are slightly less than 20% in 313 

short- to medium-range forecasts. 314 

Conversely, Figure 2 reveals a degradation in forecast skills when assimilating Aeolus in 315 

the stratosphere. As previously discussed in Chou and Kushner (2023), this issue may arise from 316 



 

 

the simplification of the ECCC model version used to reduce computational costs, systematic 317 

model issues beyond this simplification, or deficiencies in the assimilation system. 318 

Overall, Figure 2 underscores the potential of Aeolus to enhance medium- to long-range 319 

forecasts, particularly in the upper atmosphere beyond day 4. The IAW accounts for more than 320 

50% of the improvements from operational winds, and more than 25% for the IAOW. This 321 

stratospheric improvement in long-range forecasts over the Arctic is primarily attributed to the 322 

signal during the winter season, characterized by an anomalously strong Arctic stratospheric 323 

polar vortex in 2019-2020 (Chou and Kushner, 2023; Lawrence et al., 2020). 324 

 325 

Figure 2: Normalized change in RMS forecast error as a function of pressure level between (a) CNTRL–winds and 326 

CNTRL, (b) CNTRL–winds and CNTRL–winds+Aeolus, and (c) CNTRL and CNTRL+Aeolus, for wind vector for 327 

10-day forecasts over the Arctic. Positive impact means a reduction in the forecast error. The impacts that are 328 

significant at 95% confident level are marked with black plus sign and impacts that are significant at 90% confident 329 



 

 

level are marked with red plus sign. The scores with respect to ERA5 data are interpolated onto the 16 pressure 330 

levels of the OSEs. 331 

Despite previous challenges in attributing improvements in the Arctic forecast to 332 

localized regions, some regional insight can be gained by including all forecasts and dividing the 333 

Arctic into quadrants. We repeat the pan-Arctic analysis for four Arctic quadrants and investigate 334 

the IOW, IAW, and IAOW on the wind and temperature fields over each quadrant (SFigures 1 to 335 

3 respectively). This shows that over the Arctic, Russian-Pacific-Northern Canada sector 336 

forecasts (90°E –180°E and 180°E–270°E) are most improved and sensitive to the wind 337 

observations; the IOW on the vector wind field are 5.7% and 6.7%, compared to 4.6% and 5.0% 338 

over the other two quadrants and similar results are found when Aeolus winds are assimilated. 339 

The IAW and IAOW on the vector wind field are around 2.7 and 0.8% respectively over the 340 

quadrants between 90° and 270°E, which are about 40 and 13% of the IOW, but the impacts are 341 

only around 1.6 and 0.6% over the other two quadrants, which are 33 and 12% compared to 342 

IOW. The reason why this region’s forecasts are more sensitive to wind observations remains 343 

unclear, but it is consistent when different sets of wind observations are assimilated into the 344 

forecast model. There are many aspects that can lead to this difference; for example, the 345 

proportion of land, ocean, and snow/ice, number of observations over the region, and the physics 346 

used for the region in the model. However, such investigations are beyond the scope of this 347 

paper. 348 

 349 

4.2 Impact of wind observations on strong wind and vapor transport events over the Arctic 350 

We are interested in whether wind observations would improve the forecasts of severe 351 

weather events and how much in advance the forecasts would show an improvement. More 352 



 

 

specifically, this subsection presents the impact of wind observations on strong wind events and 353 

water vapor transport events over the Arctic. The proportions of the Arctic that exceed the 354 

KE500 and IVT thresholds (90th percentile of the field of the season) are recorded at each 355 

forecast hour and the time-series of this spatial coverage ratio are shown in Figures 3 and 4, 356 

respectively. The days that are defined as more energized or in a more disturbed atmospheric 357 

state are the top 25% (red dots) of this spatial coverage ratio during the entire period of analysis. 358 

For these events at and above the 75th percentile, the forecasts that are defined as strong KE500 359 

occur when at least 13% of the Arctic points exceed the thresholds of the field, and the forecasts 360 

that are defined as strong IVT occur when at least 12% of the Arctic exceed the threshold of the 361 

field. Strong KE500 forecasts do not necessarily overlap with the forecasts that have strong IVT. 362 

For example, before mid-July 2019, there are around eight forecasts that experienced strong IVT, 363 

but none of the forecasts during this period are defined as strong KE500 forecasts. Also, at the 364 

end of December 2019 and in early January 2020, most of the forecasts show an energetic, strong 365 

KE500, atmosphere, but the IVT over the Arctic during this period is relatively weak. By 366 

grouping the forecasts using the top 25%, we get sufficient forecasts (around 100 forecasts) to 367 

compare and to investigate the impact of wind observations on disturbed atmospheric states. 368 



 

 

 369 

Figure 3: The time-series (solid black line) during (a) summer 2019 and (b) winter 2019-20 of the spatial coverage 370 

ratio that exceeds the 90th percentile of the 500-hPa Kinetic Energy of the season over the Arctic. The time-averaged 371 

of the spatial ratio of the season is shown as the dashed black line. The strong KE500 days (red dots) are defined as 372 

when the spatial ratio exceeds the 75th percentile of the two seasons combined. The threshold of the spatial ratio (the 373 

75th percentile) is indicated in the legend for the extreme days. 374 

 375 



 

 

Figure 4: Similar to Figure 3, but for the spatial coverage ratio that exceeds the 90th percentile of the IVT over the 376 

Arctic. 377 

We use the same approach, outlined in Section 3, to find the normalized change in the 378 

forecast RMSE between a pair of experiments, but we composite tropospheric forecast skill 379 

impacts conditioned on strong (Figure 5a,b,c) and normal (Figure 5d,e,f) Arctic KE500, and on 380 

strong (Figure 6a,b,c) and normal (Figure 6d,e,f) Arctic IVT. Note that the x-axis is showing the 381 

forecast “ahead” time, instead of the forecast lead time as shown in Figures 1 and 2. The forecast 382 

ahead time represents the number of days prior to the identified disturbed atmospheric day, as 383 

measured with KE500 or IVT. For instance, if there is a strong wind event on July 15th, then the 384 

scores show the impact of wind observations on forecasts of July 15th that were made prior to the 385 

event. If the score for forecasts of two-day ahead time is 2%, then it means that the forecast 386 

RMSE with two-day lead time that was made on July 13th is reduced by 2% when wind 387 

observations are assimilated. 388 

The wind observations consistently provide more positive impact on forecasts of strong 389 

KE500 on wind and temperature fields. For example, the IOW on forecasts of normal KE500 is 390 

around 4.6% and it increases to around 5.8% when conditioned on forecasts of strong KE500. 391 

Consistent findings are noted with the assimilation of Aeolus winds. The impact scores show an 392 

increase from 1.8 to 2.4% when operational winds are replaced by Aeolus winds, when 393 

conditioned on normal (Figure 5e) and strong (Figure 5b) KE500 days. Specifically, the IAOW 394 

for forecasts of strong KE500 is nearly triple the impact scores observed when conditioned on 395 

normal KE500 days. The averaged scores over the five forecast lead times rise from 0.6 to 1.5%. 396 



 

 

 397 

Figure 5: Normalized change in RMS forecast error for IOW (left column), IAW (middle column), and IAOW (right 398 

column) for vector winds, temperature and wind shear, as a function of “Forecast Ahead Time” (see text), for strong 399 

KE500 forecasts only (top row) and normal KE500 forecasts only (bottom row). Note that the scale of the y-axis 400 

extends from -5 to 5% for panels b, c, e, and f. Significance testing as in Figure 1. Strong KE500 events are defined 401 

in Figure 3; the remaining KE500 events are identified as “normal”. 402 

 403 



 

 

Figure 6: Similar to Figure 5, but for vector winds, specific humidity, and IVT, for strong and normal IVT events 404 

defined in Figure 4. 405 

Greater impacts are also seen when conditioned on forecasts of strong IVT (Figure 406 

6a,b,c) compared to forecasts of normal IVT (Figure 6d,e,f). The IOW on the wind field 407 

increases by approximately 1.3% when conditioned on strong IVT and by 1.0% for the IVT field. 408 

Conversely, the averaged IAW over five days shows little to no difference when conditioned on 409 

forecasts of strong IVT days (Figure 6b,e). The impact scores averaged over the five forecast 410 

lead times on the wind and IVT fields exhibit no more than a 0.2% difference. If Aeolus winds 411 

are assimilated on top of operational winds, the IAOW would approximately double the impact 412 

scores for the wind field when conditioned on forecasts of strong IVT (Figure 6c). Generally, 413 

Aeolus winds (Figure 6b,c,e,f) demonstrate little to no consistent impact on the specific humidity 414 

field. 415 

The results from Figure 5 encourage us to investigate the profiles of impact of wind 416 

observations conditioned on strong (Figure 7a,c,e) and normal (Figure 7b,d,f) Arctic KE500 with 417 

a longer forecast ahead time. Profiles of impact conditioned on strong and normal Arctic IVT are 418 

shown in the supplementary information (SFigure 6). The operational winds reduce the forecast 419 

RMSE by more than 8% throughout the atmosphere with 3 to 5 days of lead time before strong 420 

KE500 days (Figure 7a), whereas they only reduce the forecast RMSE by about 4% for normal 421 

KE500 (Figure 7b). When operational winds are replaced by Aeolus winds, the IAW on forecasts 422 

of strong KE500 with a lead time of 3 to 5 days (Figure 7c) accounts for approximately 50% of 423 

the improvement obtained with all operational winds. Consistently with our findings above, the 424 

IAW is about 40% of the IOW and the IAW impact on strong KE500 days is greater than on 425 

normal KE500 days (Figures 7c-d), and IAOW is about 25% of the IOW, with extended lower 426 



 

 

tropospheric impacts four or more days ahead being evident for the strong KE500 days, which is 427 

not as evident for the normal KE500 days (Figures 7e-f). 428 

 429 

Figure 7: Normalized change in RMS forecast error as a function of pressure level for IOW (top row), IAW (middle 430 

row) and IAOW (bottom row), for wind vector errors up to 10 forecast days ahead. Positive impact means a 431 

reduction in the forecast error. The left column shows the impact of the added wind observations respectively of the 432 

strong KE500 days only defined in Figure 3 and column two shows the impact of the non-strong KE500 days only. 433 

Significance testing as in Figure 2.  434 

5 Conclusions 435 

The Arctic has fewer weather observation stations and limited data sources due to its low 436 

population density, limited accessibility, and harsh environment. However, the Arctic’s 437 

distinctive geography, increasing economic activity, global geopolitical importance, and rapidly 438 

evolving climate changes necessitate advances in weather modeling and forecasting. Precise 439 

weather predictions in the Arctic are crucial for the safety of individuals and navigation in the 440 

area, and a deeper comprehension of Arctic weather has the potential to improve global climate 441 

models.  442 



 

 

To better understand the role of wind observations in the weather forecasts over the 443 

Arctic, we have assessed the impact of operational winds (IOW), Aeolus winds (IAW), and 444 

Aeolus winds on top of operational winds (IAOW) on the ECCC global forecast system over the 445 

Arctic during July to September 2019 and December 2019 to March 2020. The analysis covers 446 

both the difference between disturbed atmospheric conditions (high versus normal KE500 and 447 

IVT days) and surveys different Arctic sectors for improvements. This extends Chou and 448 

Kushner (2023) who examined the general scale dependence and global distribution of IOW and 449 

IAOW. The IAOW has been enabled by the new experiment without the operational winds but 450 

with the Aeolus winds (CNTRL–winds+Aeolus), which allows us to study the impact of Aeolus 451 

winds as if it were, hypothetically, the only source of wind observations. 452 

As anticipated, operational winds significantly enhance Arctic forecasts, reducing 453 

forecast RMSE by approximately 5%, particularly in the wind and temperature fields. This 454 

improvement is even greater for disturbed atmospheric conditions, as measured by high KE500 455 

and IVT values. This highlights how wind observations become even more important during 456 

extreme atmospheric states where simple dynamical balances that couple mass and circulation 457 

break down. Despite Aeolus winds representing less than 1% of operational wind observations, 458 

substituting operational winds with Aeolus winds in the assimilation process results in an 459 

observed 2% reduction in errors, equivalent to approximately 40% of the improvement achieved 460 

by operational winds. This improvement extends to the additional forecast improvements seen on 461 

strong KE500 and IVT days. Thus, despite being derived from a single satellite, Aeolus winds 462 

can match nearly half of the forecast enhancement realized by operational winds, which 463 

incorporate wind measurements from multiple ground-based instruments, radiosondes, and 464 

satellites. This suggests that Doppler wind lidar systems have the potential to strongly 465 



 

 

complement conventional wind observations. This was already seen when Aeolus data was 466 

shown, during the COVID-19 pandemic, to be capable of compensating for the disruption of 467 

AMDAR aircraft wind measurements and consequent forecast degradation (James et al., 2020). 468 

Altogether, assimilating Aeolus winds on top of operational winds (IAOW) yields an additional 469 

0.8% reduction in errors, constituting around 16% of the overall improvement obtained with all 470 

operational winds. 471 

While wind observations exhibit positive outcomes for mass-related fields like 472 

temperature, operational winds only contribute approximately half of the impact on the specific 473 

humidity field compared to the temperature field. Additionally, both the IAW and IAOW show 474 

little to no influence on the specific humidity field over the Arctic. This suggests that wind 475 

observations have limited efficacy in improving the specific humidity field. 476 

As noted, Aeolus not only improves overall forecasts over the Arctic but also improves 477 

predictions for specific days characterized by strong winds and enhanced water vapor transport, 478 

which are associated with extreme weather events. In particular, the IAOW further reveals a two 479 

to threefold increase in impact scores (ranging from 0.5 to 1.5% for strong KE500 and 0.6 to 480 

1.2% for intense IVT) on the wind field when forecasts are conditioned on a disturbed 481 

atmosphere, as opposed to normal days. While these results are found consistently in our 482 

diagnostics, their statistical significance is marginal and, we expect, will depend strongly on the 483 

smaller scale phenomena associated with extreme wind and IVT events. We thus strongly 484 

recommend conducting longer periods of OSEs at a higher resolution or with the use of a limited 485 

area regional forecast model.  486 

The results also provide a compelling rationale for ECCC and other modelling centres to 487 

consider the operational assimilation of Aeolus winds. In particular, results have demonstrated 488 



 

 

enhancements in forecast skill over data-sparse regions such as the Canadian Arctic, and for 489 

forecasts of intense wind events linked to extreme weather patterns, which can have large health, 490 

societal, and economic impacts. Notably, several European weather forecast centers, including 491 

ECMWF, DWD, Météo-France, and UK Met Office, have already embraced assimilation of 492 

Aeolus (Rennie et al., 2021; Pourret et al., 2022; Kiriakidis et al., 2023). Therefore, we 493 

recommend that weather forecast centers consider assimilating global wind profile measurements 494 

from the potential Aeolus follow-on mission, Aeolus-2, scheduled for launch in 2030 (Heliere et 495 

al., 2023). 496 
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